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A method is presented for finding the boundary conditions for computer simulations based on molecular
statics models. The boundary condition is expressed as a mapping from the atoms inside the boundary to the
atoms outside and it models the effect of the surrounding atoms, which are too many to be modeled explicitly.
The boundary condition is computed with a variational approach using lattice statics Green’s functions as test
functions. As examples, these boundary conditions are applied to systems with dislocations and cracks.
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I. INTRODUCTION

This paper is concerned with the boundary condition �BC�
for numerical simulations based on molecular statics models.
Such models typically involve a large number of atoms and
the computation tends to be rather expensive. Therefore in
practice, the computational domain is usually selected near
the defects where the atomic deformation is large. Conse-
quently artificial boundaries are created, where appropriate
BCs have to be applied. Due to the nonlocal nature of static
problems, the boundary may have a considerable effect on
the simulation results.

A common approach is the fixed BC �or rigid BC�, where
one holds the atoms at the boundary at certain position. Since
the atoms at the boundary are not allowed to move, artificial
size effect will be introduced, and the results might depend
strongly on the size of the system. For instance, many simu-
lations of dislocations have shown the effect of the fixed
boundary on the core structure unless the size of the system
is sufficiently large.1,2 To minimize the boundary effect, a
more flexible boundary condition has been proposed by Sin-
clair et al.1,3 The idea is to surround the computational do-
main with a buffer region that connects the computational
domain to a continuum field. Then based on the excessive
forces accumulated in the buffer region, one uses the Green’s
functions to adjust the position of the atoms in the entire
system. This idea was later extended to three-dimensional
�3D� systems by Rao et at.2 Recent methods for calculating
the Green’s functions more accurately4,5 makes this approach
even more attractive.

The purpose of this paper is to develop an efficient BC for
molecular statics. We start with the full molecular static
model for the entire sample, from which atoms near the de-
fects are selected to form a computational domain. We then
eliminate the remaining degrees of freedom to reduce the
dimension of the problem. This approach relies on the har-
monic approximation for those surrounding atoms that will
be removed. This idea has been explored by Karpov et al.6

Using Fourier transform, they have derived the boundary
condition in the form of a discrete convolution. This ap-
proach was later extended to single and multilayered graph-
ite structures by Medyanick et al.7

The present paper proposes a BC that can be applied to
boundaries of arbitrary geometry. It is expressed as a map-
ping from the atoms inside the computational domain to the

outside atoms. The mapping is given by a sparse matrix.
Such mapping corresponds to solving a linear problem in the
outer region, which is still a problem too large to fit in a
practical computation. But we will show that this difficulty
can be overcome by an alternative representation, based on
the lattice Green’s functions. A variational formulation will
be given, in which the Green’s functions are used as test
functions.

The form of the resulting BC is similar to the multiscale
BC obtained by Karpov et al.6 The derivation of the multi-
scale BC relies on Fourier transform and as a result the for-
mulation only applies to planar boundaries. The main advan-
tage of the multiscale BC is that it is expressed in terms of a
kernel matrix, which is invariant along the boundary. How-
ever, this representation of the BC breaks down at corners. In
order to retain the BC, additional atoms have to be recon-
structed outside the corners by extrapolation.7 The approach
proposed here offers the flexibility of treating corners. An-
other practical issue is that the exact BC tends to be nonlo-
cal: All the atoms near the boundary are coupled, which
makes the implementation rather expensive. Fortunately it
has been observed that the nonlocal dependence decays
rather quickly as the distance between two the atoms at the
boundary gets larger.6 Therefore in Refs. 6 and 7 a cut off is
introduced, neglecting the influence of the atoms outside the
cut-off distance. In our approach, the local approximation is
achieved with a variational formulation: assuming that an
atom depends on L closest neighbors chosen from the inte-
rior, we find the optimal BC by minimizing certain error.

Meanwhile, this formulation, is different from the work of
Sinclair et al.1,3 and the following works,2,4,5 which also use
Green’s functions. There they are used in the actual simula-
tions to adjust the positions of the atoms outside and inside
the boundary. The implementation requires the evaluation of
the Green’s functions and the displacement of all the atoms
has to be adjusted every few steps while in our approach they
are used prior to the simulation to obtain the BC; once the
boundary condition is obtained, the implementation is quite
easy. It does not require the access to the Green’s function
anymore. In addition, the local approximation makes the
implementation much more efficient. To compare the com-
putational cost, let M and N be the number of atoms at the
boundary and the number of atoms in the computational do-
main, respectively. Then the flexible BC of Sinclair et al.
requires O�MN� evaluations of the Green’s function. For the
BC proposed here, the cost is O�ML� operations of three-
dimensional matrix-vector multiplications.
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Although modern computers can treat a great number of
atoms, the current BCs are still very useful. First, the imple-
mentation of the BC is straightforward. Second, since the
derivation of the BC only depends on the bulk properties �the
force constants� and the implementation only involves the
coordinate of the nuclei, it can be used in simulations based
on quantum-mechanical models, e.g., ab initio molecular dy-
namics. One such example can be found in the recent work,8

where flexible BCs are implemented in the density-
functional-theory calculation of dislocation structures. Third,
we will show that the BC leads to a consistent linearization
of the full interatomic potential. It simplifies the model so
that the atomistic interaction is linearized in regions where
the displacement is smooth while the full atomic description
is still retained in critical areas near defects. Such technique
will be useful for many other problems including dynamics
problems.

Finally, similar issues also arise in dynamics problems,
where the purpose of the BCs is to prevent boundary reflec-
tions. There has been a great deal of recent interest in devel-
oping nonreflecting BCs.9–15 At zero frequency, such nonre-
flecting BC will reduce to the BC for static problems. In fact,
many methods in this case, such as the damping method16

and the perfectly matched layer method,15 become the fixed
or rigid BC, with only a few added layers, which will pro-
duce considerable error at low frequency. The method pre-
sented here can be extended to dynamics problems. This will
be discussed in a forthcoming paper.

II. THE FORMULATION OF THE BOUNDARY
CONDITION

We consider an atomistic system with N atoms, denoted
by �, from which n atoms are selected to form the compu-
tational domain, denoted by �I. The collection of the re-
maining atoms will be written as, �J, �=�I��J. Such par-
tition is demonstrated in Fig. 1. In most practical
simulations, the dimension of � is much larger than that of
�I, N�n.

Let Ri be the reference position of atom i. This can be
chosen based on the structure of a perfect crystal or based on
an analytical solution of the corresponding anisotropic elas-
tostatics problem. The current position is denoted by ri with
the displacement ui=ri−Ri. The energy of the entire system
is modeled by a potential energy, V, which is written as

V�u� = V�uI,uJ� . �1�

Here u is the displacement of all the atoms, and uI and uJ are
respectively the displacement of the atoms inside and outside
the computational domain. For molecular statics, one seeks
the mechanical equilibrium by minimizing the total energy

min
u

V�uI,uJ� . �2�

Due to the large number of degrees of freedom associated
with the entire system, such a problem is too large to fit in
any practical computation. Therefore a reduction procedure
is needed to reduce the size of the problem. For this purpose,
we formulate this problem as a two-step minimization. In the
first step, we consider

min
uJ

V�uI,uJ� . �3�

Alternatively, one may solve the nonlinear equation

�uJ
V�uI,uJ� = 0. �4�

The purpose of this step is to eliminate uJ from the system.
In fact, let uJ

� be the corresponding solution, then in the sec-
ond step, the energy becomes V�uI ,uJ

��. The nonlinear equa-
tion is reduced to

�uI
V�uI,uJ

�� = 0, �5�

which is a much smaller problem.
Although the first step dramatically reduces the atomic

degrees of freedom, finding uJ
� from Eqs. �3� or �4� directly is

still impractical. Therefore we make the following approxi-
mation: we linearize the interatomic force for those atoms
outside the boundary. Such approximation is called the har-
monic approximation.17,18 The underlying assumption is that
the displacement in the outer region is smooth. The interac-
tion among the atoms inside the computational domain, on
the other hand, is retained to model the defect structure. To
explain this approximation more precisely, we let D
�R3N�3N be the force matrix of the potential energy. An
entry of D will be denoted by Di,j with the associated atoms
i and j. The whole force matrix is partitioned according to
the decomposition of the domain

D = �DII DIJ

DJI DJJ
� . �6�

We then replace Eq. �4� by

ΩΩI J

FIG. 1. �Color online� Schematic illustration of the partition of
the system: the filled circles are the atoms included in the compu-
tational domain; the open circles are the outside atoms.
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DJIuI + DJJuJ = 0 �7�

from which one finds

uJ
� = BJIuI, BJI = − DJJ

−1DJI. �8�

The matrix BJI defines a mapping from the inside atoms to
the ones outside. It can be viewed as an interpolation opera-
tor that reconstructs the displacement of the outside atoms.

This procedure corresponds to approximating the total en-
ergy by

V � Etot = V�uI,BJIuI� +
1

2
�uJ − BJIuI�TDJJ�uJ − BJIuI� . �9�

Notice that the linear term has dropped out thanks to Eq. �4�.
Therefore this is a more flexible harmonic approximation
which the full atomic interaction in the computational do-
main is still retained.

In the case when the potential energy is quadratic, it is
equivalent to Schur complement. Namely, the energy after
eliminating uJ is

V�uI,BJIuI� =
1

2
uI

T�DII − DIJDJJ
−1DJI�uI.

Due to the dimension of DJJ, it is still not practical to
compute the mapping directly from Eq. �8�. Therefore we
will use an alternative expression. Let G be the inverse of D

G = D−1, �10�

which is partitioned accordingly

G = �GII GIJ

GJI GJJ
� . �11�

Since G is the inverse of D, we have

DJIGII + DJJGJI = 0.

Therefore, the mapping BJI can be expressed in terms of
the Green’s function as follows:

BJI = GJIGII
−1. �12�

The Eq. �12� provides the basis for finding the boundary
condition. This formulation is quite easy to implement, based
on the following observation: �a� many atomic potential
models have a cut-off radius, rcut; an atom only interacts
directly with other atoms within its cut-off radius. �b� Be-
cause of the short-range interaction, the matrix DJI is sparse:
only the entries corresponding to the atoms close to the
boundary are nonzero. For the same reason, the inside atoms
that are involved in BJI are the ones that are next to the
boundary. Meanwhile, in the next step, the forces in Eq. �5�
only involve the outer atoms near the boundary. As a result,
one just needs to compute a small number of entries in BJI.
�c� Because of the large size of the entire sample, the matrix
G can be approximated by the Green’s function for the full
space, which will be discussed in the following section. �d�
The Green’s function can be efficiently computed with a
Fourier integral, as described later.

Let gi,k be the �i ,k� entry of G. This will be approximated
by the full-space Green’s function centered at atom k. The
Eq. �12� can now be written as

�
i��I

Bjigi,k = gj,k,

which has the following interpretation: if the inside atoms
next to the boundary are displaced according to the Green’s
function centered at Rk, the displacement of the outside at-
oms should be given by the same Green’s function. In addi-
tion, if all the atoms at the boundary are given a constant
displacement, then this almost corresponds to a rigid trans-
lation of the entire sample. As a result, we have for any j
��J

�
i

Bji = I .

This will be enforced as a constraint in our computation.
From Eq. �8�, we observe that Bji=0, if the distance of atom
i from the boundary is larger than the cut-off radius. In ad-
dition, with several numerical tests, we found that the entry
also decays rapidly as the distance between atom i and atom
j increases. Therefore we compute BJI as follows: for each
outside atom j whose distance from the boundary is less than
rcut, we choose several neighboring atoms from inside whose
distance to atom j is less than a prescribed distance rmin.
Based on their coordinate in the reference state, we compute
the Green’s functions and form the linear system Eq. �12�.
Another observation made was that along the straight edges
of the boundary, the entries of BJI remain the same. There-
fore, we compute the matrix at the corners and then extend it
along the edge until we arrive at another corner.

We now formulate the boundary condition as a variational
problem

min��
i,k

Bjigi,k − gj,k�2
�13�

The minimization problem is solved by a least-square
method. Once the mapping BJI is obtained, the next step is to
solve the Eq. �5�. In practice, it is more convenient to solve
the nonlinear equation by an energy minimization. Although
there is a corresponding total energy V, the calculation re-
quires the displacement of all the atoms. For empirical po-
tential models, however, this can be simplified considerably.
Notice that most interatomic potential can be written as

V = �
k

Vk.

Namely, the energy can be defined for each atom. Based on
this observation, we define the effective energy as

Veff = �
dist�Rk,�I��rcut

Vk. �14�

When uJ is held constant, one can easily show that

�uI
Veff�uI,uJ� = �uI

V�uI,uJ� . �15�

Therefore, we will use Veff as the approximate energy to help
solving the nonlinear Eq. �5�. This can be done as follows:
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we first hold uJ fixed and then minimize the effective energy.
Upon convergence, we adjust uJ using the mapping BJI and
apply the minimization again. These steps will be iterated
until certain convergence criteria are met. The minimization
is done by the Broyden-Fletcher-Goldfarb-Shanno �BFGS�
method.19

We may now compare our approach to the work of Sin-
clair et al.,1,3 which also uses Green’s functions. Both meth-
ods aim to eliminate the artificial forces accumulated at the
boundary, thereby mimicking the behavior of a much larger
system. The method of Sinclair et al. is based on the formula

u j = − �
k

gj,kfk,

which is derived for linearize models. Here fk is the force on
atom k at the boundary. Applying this formula, the region
outside the computation domain automatically satisfies the
force balance within the harmonic approximation. Since the
atomic interaction inside the computational domain is non-
linear, this procedure has to be repeated until convergence is
achieved. In contrast, our approach reconstructs the displace-
ment of the outside atoms from the displacement of the at-
oms inside, instead of the forces. Once the mapping BJI is
obtained, the Green’s functions are no longer needed in the
simulation, which is more convenient in practice.

III. THE LATTICE STATICS GREEN’S FUNCTIONS

In this section, we describe the Green’s function for mo-
lecular statics and how they can be efficiently computed.
Such function serves as the fundamental solution of the lat-
tice statics problems. It is particularly useful for studying the
atomic deformation due to local defects, see the paper20 for a
more complete discussion. In order to treat full three-
dimensional problems, we consider the Green’s function in
3D with an applied point force, as demonstrated in Fig. 2. In
addition, we also consider the Green’s function for a half
space, which is needed for boundary conditions near a free
surface, e.g., a crack face, see Fig. 5.

A. The full-space Green’s function

We first consider the Green’s function subject to a point
force applied at the point Rk. It is defined as the solution of
the following equation:

�
j

Di−jgj�k = �i,kI . �16�

The matrix I is the 3�3 identity matrix. Due to translational
symmetry, we have gj�k=gj−k�0. Therefore, we will drop the
second index and let gj =gj�0.

The Green’s function may be computed in a bounded do-
main with periodic or fixed boundary conditions. However in
3D, such computation tends to be expensive and the results
suffer from the boundary effect. A more efficient method is
based on a representation of the Green’s function as a Fourier
integral. Let g��� be the Fourier transform of gj

g��� = �
j

e−iRj·�gj . �17�

Applying Fourier transform to Eq. �16�, we get

g��� = D���−1, �18�

where D���, known as dynamical matrix,17,18 is the Fourier
transform of the force constant

D��� = �
j

e−iRj·�Dj . �19�

As a result, we can express the Green’s function as

gj =
1

�B�	B
D���−1eiRj·�d� , �20�

where B is the first Brillouin zone and �B� is its volume.
Such Fourier integral is typically approximated by a

quadrature formula with k points21 as the quadrature points.
One problem is that the acoustic branches of the phonon
spectrum approaches to zero at the origin, which introduces a
�−2 singularity, degrading the accuracy of the numerical in-
tegration. There are several methods to treat the singularity.
This has been carefully studied in the recent work;4 see Ref.
5 for numerical results on the convergence rates. To obtain
better numerical accuracy, we will use the following tech-
niques.

First, assuming that the system is a simple lattice, the
dynamical matrix for small wavenumber has the asymptotic
expansion of

D����� = −
1

2�
j

Dj
���� · Rj�2 + ¯ = �

	


�C	�
��	�
 + ¯ ,

where

C	�
� = −
1

2�
�
Rj

Dj
��Rj

	Rj



are the elastic constants17,18 and � is the volume of the unit
cell. Based on this asymptotic expansion, one finds that in
the relative displacement

Gj − G0 = 	
B

D���−1
cos�r j · �� − 1�d� �21�

the singularity is removed. Since the dynamical matrix is
positive definite, this equation also shows that for the diag-

Rk

R j
Rk

R j

(b)(a)

FIG. 2. �Color online� Green’s function at Rj subject to a point
force exerted at Rk. Top: the Green’s function in the full space;
bottom: the Green’s function in the half space. The circle indicates
an infinite system; the dash line shows a free surface.
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onal entries of the Green’s functions, the maximum should
occur at the origin.

Second, using the asymptotic analysis,22 one can show
that for large Rj, the main contribution to the Fourier integral
Eq. �20� comes from the origin. In particular, the Green’s
function should decay like 1 /R. Therefore, in our calcula-
tion, we compute the relative displacement, and then extract
G0 by fitting.

Finally, the Fourier representation Eq. �20� becomes a dis-
crete sum in the numerical approximation and usually the
resulting function is periodic, creating artificial images. No-
tice, however, the asymptotic expansion above agrees with
that of the elastic Green’s function. In fact, the leading term
is the Christoffel matrix. Therefore in this case the lattice
statics Green’s function may be approximated by the elasto-
static Green’s function �multiplied by the volume of the unit
cell, ��, which can be formulated into an one-dimensional
integral23 and efficiently computed. A more accurate approxi-
mation based on higher order expansions can be found in
Ref. 4.

As an example, we computed the Green’s function for a
body-centered-cubic �BCC� system. The results are plotted in
Fig. 3 the lattice Green’s function together with the elastic
Green’s function. We observe that the lattice Green’s func-
tion starts to converge to the elastic Green’s function when
the distance is beyond 4–5 atomic spacings. Similar results
were also found in Ref. 2.

B. The half-space Green’s function

For a system with a free surface, e.g., an open crack, the
boundary of the computational domain will intersect the sur-
face, where the boundary conditions will be different from
other parts of the boundary. In this case, we will derive the
half-space Green’s function as the test functions. Similar
derivations for the continuum elastostatics model can be
found in Refs. 24–26.

To compute such Green’s functions, we consider a system
in a half space containing all atoms for which, Rj ·n�0; n is
the normal direction. For simplicity, we assume that the unit-
cell vectors of the lattice are orthogonal and n coincides with
the third direction. This can usually be achieved by choosing
a large unit cell, which contains several atoms. Therefore the
system is seen as a complex lattice. The Green’s function is
defined as the solution to the linear Eq. �16� with a point
force applied to the �0,0 ,k� cell. The traction at the bound-
ary is zero.

Assuming that the lattice spacing in the three directions
are a1, a2, and a3. We first take a Fourier transform along the
tangent planes, letting

Uj��1,�2� = �
Rk,Rk·n=ja3

uke
−i�Rk,1�1+Rk,2�2�. �22�

Similarly we let Kj and Gj�k be the Fourier transform of the
force constant and the full-space Green’s function with the
same center. For simplicity, we assume Kj =0 for �j�
1. This
is usually the case since most atomic potentials have a cut-
off radius about 2–4 atomic spacings and it can always be
accomplished by choosing a large enough unit cell. The force

constant will be adjusted accordingly. They satisfy the sym-
metry property17,18

Dj = D−j
T

from which, one finds that

Kj = K−j
� , �23�

where � indicates complex conjugate.
After the Fourier transform, we obtain the following dif-

ference equation:

K−1Uj−1 + K0Uj + K1Uj+1 = I� jk, j 
 0. �24�

For the homogeneous equation, one can seek a solution in
form of

Uj = � jε ,

which leads to an eigenvalue problem

0 2 4 6 8 10 12 14 16 18
0
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0.3

0.35

r/a
0

g/
g 0

Lattice Green’s function
Anisotropic Elasticity Green’s function
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0
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0.06

0.07

0.08

0.09

0.1

r/a
0

g
/g

0

Lattice Green’s function
Anisotropic Elasticity Green’s function

(b)

(a)

FIG. 3. �Color online� Full-space Green’s functions along the
�111
 direction. Left: the diagonal �1,1� entries; right: the off-
diagonal �1,2� entries. For comparison, the Green’s functions for
elastostatics are also plotted.
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det�K−1 + K0� + K1�2� = 0 �25�

and ε is the corresponding eigenvector.
To change the eigenvalue problem to a traditional form,

we define the matrices

P = � − K−1 0

−
1

2
K0 I �, Q = �1

2
K0 I

K1 0
� . �26�

Then the eigenvalue problem is turned into a generalized
matrix eigenvalue problem

P� = �Q� �27�

in which �= �ε ,��T and �= � 1
2K0+�K1�ε.

Due to the symmetry property Eq. �23�, the roots will

appear in pairs: if � is a solution, so is 1 / �̄. In addition, let
�=e−i�3a3, then one finds that

K−1�−1 + K0 + K1� = D��1,�2,�3� .

Since the dynamical matrix is positive definite for any non-
zero real wavenumber, �3 must be complex unless �1=�2
=0. Therefore in this case, the roots ����1. For each pair of
roots, we choose � so that ����1. This guarantees that the
solution approaches to zero as j goes to infinity. Thus the
general solution can be written as

Uj = Gj�k + � �s
jεs � cs = Gj�k + E� jC .

Here � is a diagonal matrix containing the selected eigen-
values. The constant matrix C, the sth column of which is
given by cs, will be determined below.

To determine C, we first assume k
0. So at j=0, we have

K0U0 + K1U1 = 0.

Combining the above two equations, we get

�
s

K−1E�−1 = − K−1G−1�k.

Hence,

C = − �E−1G−1�k.

This yields

Uj = Gj�k − E� j+1E−1G−1�k,

where

Gj�k��1,�2� =
a3

2�
	

−�/a3

�/a3

D���−1ei�j−k�a3�3d�3.

The derivation here assumes k
0, i.e., the location of the
point force is away from the interface. With a direct calcula-
tion, one can verify that the formula is also valid for k=0.
Finally let

A��1,�2� = E�E−1.

Then the half-space Green’s function is now expressed as a
Fourier integral

g+�ma1,na2,la3�k� = g
ma1,na2,�l − k�a3�

−
1

�B�	B
A��1,�2�l+1D���−1ei
ma1�1+na2�2−�k+1�a3�3�d�,

=
1

�B�	B
ei
ma1�1+na2�2+�l−k�a3�3�

�
I − A��1,�2�l+1e−i�l+1�a3�3�D���−1d� . �28�

In Fig. 4, we plotted the half-space Green’s function for a
BCC system along the �110
 direction. We can observe that
as the center moves away from the surface, the half-space
Green’s function will approach to the full-space Green’s
function. Therefore, in our variational formulation, these
half-space Green’s functions are only used when the center is
about 10 atomic spacings away from the interface. For points
in bulk, the full-space Green’s functions are used.

IV. NUMERICAL RESULTS

Both of the following numerical tests are conducted on a
BCC iron-	 system. For the interatomic potential, we use the
embedded atom potential.27 The lattice parameter is a0
=2.866 Å with cut-off distance 8.107 Å, which includes
148 neighbors. Notice that this cut-off distance is larger than
that of the electron density, which is 4.095 Å. For the pa-
rameter rmin in Eq. �13�, we set it to 6a0, and for each atom
at the boundary, there are about 250 inside atoms within this
range. Therefore, the cost of implementing this BC is about
the same as the force calculation for each atom for empirical
potentials.

A. Single-edge dislocation in iron-�

Our first test is on a single-edge dislocation. We consider
a dislocation with Burger’s vector a0 /2�111
 and slip plane

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
k=0
k=3
k=6
Full space Green function

FIG. 4. �Color online� Half-space Green’s function. The normal
direction is �110
. The diagonal �1,1� entries of the Green’s func-
tions, centered at k=0,3, and 6, are plotted, along with the full-
space Green’s function for comparison. In these calculations, 1283 k
points are used for the Fourier integral.
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�110�. The initial position of the atoms are computed from
the analytical solution of the anisotropic elasticity based on
the Stroh’s formalism.28 Other studies of such system based
on atomistic models can be found, e.g., in Refs. 1, 2, and
29–31. To create the computational domain, we start with a
unit cell with six atoms and duplicate the cells in the �111
,
�110
, and �12̄1
 directions. In the third direction, we use 20
cells with periodic boundary conditions applied.

We start with a system with the simulation box of 30
�30 cells in the �111
 and �110
 directions. In the Stroh’s
formalism, we first choose the line force f =0. In this case,
our boundary condition produces the same results as the
fixed boundary conditions. For a system of this size, this
observation agrees with that of many other simulations, e.g.,
Ref. 2. Next we choose f =41.42 GPa Å2 along the direction
of the Burger’s vector. In Fig. 5, we show the results from
our boundary condition and the fixed boundary condition for
different system size. We find that in this case, the results
from the fixed boundary condition depend on the system size
and they start to converge when the size is increased to about
90�90 and they agree with the results computed from our
flexible boundary condition.

In the minimization procedure, we set the following con-
vergence criterion: maxi�fi���TOL, and TOL
=10−3 kB K Å−1. Table I shows the number of iterations and
the cpu time for each numerical run.

B. Simulation of an elliptical crack

Next we consider an elliptical crack in the BCC iron-	
system. The system studied is a 3D rectangular sample with

the three orthogonal axes along the �110
, �11̄0
, and �001

directions, respectively. The crack is chosen to lie on the
�110� plane and the crack front is parallel to the �001
 direc-
tion. The initial position of the atoms are computed from the
analytical solution of the anisotropic elasticity.32 In the ana-
lytical solution, the length of the crack is chosen to be 106

times the atomic spacing, which is one the scale of millime-
ters. The surface energy, which is needed in the anisotropic
solution, is taken as 0.089 eV Å−2.27

For the analytical solution, one can find a critical value of
the stress intensity factor, KI

�, which predicts the failure cri-
terion for a brittle crack. In the first simulation, we let KI
=KI

�, and the results are displayed in Fig. 6. In this case, the
displacement from all the simulations only changes slightly
and the crack front stays at the initial position, indicating that
the analytical solution of the linear continuum model is a
very good approximation. In the simulations with fixed
boundary condition, the displacement of the atoms along the
crack face does depend on the system size, but the results
start to converge as the system size is increased to about
60�60. We then set KI=1.2KI

� to create an overloading. In
this case, we observe more dependence on the system size
for the fixed boundary condition: for simulations with system
size 30�30 and 60�60, they do not correctly predict the
location of the crack tip. Nevertheless, in both cases, the
flexible boundary condition applied to a small system pro-
duce results that agree with that from a simulation of a large
system.

V. CONCLUSION AND DISCUSSIONS

Based on a consistent harmonic approximation, we have
formulated the boundary condition for molecular statics
models. With such boundary conditions, we are able to re-
duce the full model to a problem in a much smaller compu-
tational domain. The boundary conditions are expressed as a
mapping from the atoms in the computational domain to the
outside atoms that are close to the boundary. Comparing to
existing methods, the implementation of such boundary con-
dition is very efficient. To compute the boundary condition,
lattice Green’s functions are used as test functions to guar-
antee the accuracy. Several implementation issues are dis-
cussed. We expect that the boundary condition will be useful
for full three-dimensional simulations.

As examples, we conducted numerical tests on systems
with dislocations and cracks. In these examples, the predic-
tions from elasticity model are available and they are known
to be good approximations for the atomistic model. There-
fore, in these cases, the numerical results converge quickly

−30 −20 −10 0 10 20 30

1

1.2

1.4

1.6

1.8

2

2.2 30×30: Flexible BC
30×30: Fixed BC
60×60: Fixed BC
90×90: Fixed BC

−30 −20 −10 0 10 20 30

−0.2

0

0.2

0.4

0.6

0.8

1

30×30: Flexible BC
30×30: Fixed BC
60×60: Fixed BC
90×90: Fixed BC

FIG. 5. �Color online� Simulation of a single-edge dislocation.
Plotted in the figure is the first component of the displacement just
above and below the dislocation line.

TABLE I. Number of iterations and the cpu times.

Boundary condition No. of iterations cpu time

30�30 fixed BC 81 181 s

60�60 fixed BC 142 1354 s

90�90 fixed BC 222 4680 s

30�30 flexible BC 500 1394
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as the system size increases. As a result, we are able to com-
pare the results computed from the flexible boundary condi-
tion to full atomistic results. For problems where the system
is away from equilibrium and the continuum solutions are
not available, we expect that the role of these boundary con-
ditions will be more critical.

Since the full atomistic model is an optimization problem,
the method proposed here can be viewed as a Newton’s
method, applied for one step. The question of how to make
more iterations to improve the accuracy still remains. The

more general cases, such as quasistatic loading at the remote
boundaries, are difficult to deal with in a single atomistic
simulation. They have to be treated either by coupling the
atomistic model with a continuum description, or by a
coarse-graining method, keeping some selected atoms in the
outer region to describe the mechanical deformation. One
such example is the quasicontinuum method.33,34 In the mul-
tiscale setting, we expect that the current boundary condition
will also play an important role. This will be explored in
separate works.
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FIG. 6. �Color online� Simulation of an open crack. Plotted in the figure is the third component of displacement along the upper crack
face. Left: KI=1.0KI

�; right: KI=1.2KI
�.
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